The pro-S stereospecificity unearthed in E_1 -catalyzed deprotonation agrees with the stereochemical convergency found for all PLP/PMP-dependent catalysis in which bond cleavage and formation have been demonstrated to occur only at the *si* face of C-4' in the Schiff base complex.^{19,20} Thus, despite the fact that E_1 -mediated dehydration represents an unique offshoot of PMP-dependent catalysis, the stereochemical consistency of E_1 and all other PLP/PMP enzymes suggests that E_1 behaves as a normal vitamin B₆ dependent catalyst and C-3 deoxygenation follows the well-established PLP/PMP cofactor chemistry. This result also supports Dunathan's hypothesis that this class of enzymes, regardless of its catalytic diversity, evolved from a common progenitor.^{19,21}

Acknowledgment. This work is supported by National Institutes of Health Grant GM 35906. H.-w.L. also thanks the National Institutes of Health for a Research Career Development Award (GM 00559).

Entry to the Solution Chemistry of Niobium and Tantalum Sulfides: Synthesis of Soluble Forms of the Tetrathiometalates $[MS_4]^{3-1}$

Sonny C. Lee¹ and R. H. Holm*

Department of Chemistry, Harvard University Cambridge, Massachusetts 02138 Received August 20, 1990

The tetrathiometalates $[MS_4]^{2-}$ are fundamental structural and reactive entities in transition-metal sulfide chemistry.² They serve as primary precursors for the synthesis of a diverse array of compounds ranging from small metal-sulfide anions to heterometal clusters.^{2,3} The species $[VS_4]^3$, $[MoS_4]^2$, $[WS_4]^2$, and $[ReS_4]^{1-}$ are generally prepared by action of H_2S on a strongly alkaline solution of the appropriate oxometalate² and have been obtained as soluble compounds. The existence of $[VS_4]^{3-}$, recently obtained as a soluble and stable Li⁺ salt,⁴ imples stability of $[MS_4]^{3-}$ (M = Nb, Ta), a matter confirmed by the high-temperature synthesis of K₃[MS₄] from the elements (8 d, 1150 K).⁵ These compounds are described as soluble in nonaqueous solvents, but characterization of solution species has not been reported. Low-temperature preparations of [MS₄]³⁻ have been hampered by the lack of suitable oxometalate precursors, and as products of solution reactions these species have remained elusive. We report here facile solution syntheses of $[MS_4]^{3-}$.

LI3[NBS4].2TMEDA

Figure 1. The structure of $Li_3[NbS_4]$ -2TMEDA, showing 50% thermal ellipsoids and the atom-labeling scheme. The structure of $Li_3[TaS_4]$ -2TMEDA is isomorphous. Bond distances (Nb/Ta, Å): M-S, 2.274 (1)/2.280 (2); Li(1)-S, 2.512 (1)/2.518 (2); Li(2)-S, 2.465 (4)/2.40 (1). S-M-S bond angles (Nb/Ta, deg): 106.98 (4)/107.1 (1), bridged by Li(1); 106.92 (2)/104.0 (2), bridged by Li(2); 114.64 (3)/117.7 (2), unbridged.

Our first attempt to prepare $[MS_4]^{3-}$ (reaction 1, X = Et₄NCl) instead afforded the cages $[M_6S_{17}]^{4-6}$ (reaction 2), heretofore the

M(OEt)₅ + 4(Me₃Si)₂S +

only known soluble sulfides of Nb/Ta. However, anaerobic reaction 3 (X = LiOMe) generated after 3 h an orange-to-red supernatant and a precipitate, presumably Li₃[NbS₄]·4MeCN. Separation and dissolution of the latter in a solution of 6 equiv of N,N,N',N'-tetramethylethylenediamine in acetonitrile followed by precipitation with ether afforded light-yellow Li₃[MS₄]· 2TMEDA (ca. 60%; M = Nb, Ta).⁷ Compound identities were established by spectroscopy⁸ and X-ray crystallography.⁹

The two compounds are isomorphous and isometric;⁹ their structures are shown in Figure 1. The M = Nb/Ta atom resides on a position of 222 site symmetry, requiring D_{2d} anion symmetry with a distorted tetrahedral arrangement of sulfur atoms. Atom Li(1), also on a 222 site, interacts with four sulfur atoms from two adjacent anions, forming a linear polymeric chain. Symmetry-related atoms Li(2) bind to opposite pairs of sulfur atoms

([NbS4]³⁻); 241 (ν_2 , 17500), 249 (ν_2 , 14900), 340 (ν_1 , 10000) nm ([NbS4]³⁻); 241 (ν_2 , 17500), 249 (ν_2 , sh, 16000), 300 (ν_1 , 10700) nm ([TaS4]³⁻). ⁹³Nb NMR (CD₃CN/TMEDA, (Et₄N)[NbCl₆] external reference): 1214 ppm, $\Delta H_{1/2} \approx 2000$ Hz). ν_{MS} (KBr) 458 (Nb), 435 (Ta) cm⁻¹. (9) X-ray data were collected on a Nicolet P3F diffractometer with Mo

(9) X-ray data were concrete on a Nicolet P3r diffractometer with Mo K\alpha radiation. Structures were solved by direct methods or Patterson synthesis. Crystallographic data are given as a, b, c; α , β , γ ; space group, Z, $2\theta_{min/max}$, unique data $(F_o^2 \ge 3\sigma(F_o^2))$, R (%). Li₃[NbS₄]-2TMEDA (180 K): 13.983 (6), 13.983 (6), 6.152 (3) Å; P4n2, 2, 3.0°/50.0°, 880, 2.23, Li₃[TaS₄]-2TMEDA (180 K): 13.994 (2), 13.994 (2), 6.163 (1) Å; P4n2, 2, 3.0°/55.0°, 1026, 6.10. (Me₄N)₃[NbFe₂S₄Cl₄]-DMF (180 K): 11.639 (2), 15.788 (3), 19.560 (3) Å; 70.11 (1)°, 89.59 (2)°, 86.83 (2)°; PI, 4, 3.0°/50.0°, 9450, 3.23. (Et₄N)₃[TaFe₂S₄Cl₄] (298 K): 13.212 (4), 18.515 (5), 18.039 (4) Å; 90°, 111.09 (2)°, 90°; P2₁/n, 4. The structure of this compound was only partially refined owing to extreme cation disorder; however, the refinement demonstrated that the anion is isostructural with [NbFe₂S₄Cl₄]³⁻.

0002-7863/90/1512-9654\$02.50/0 © 1990 American Chemical Society

^{(19) (}a) Vederas, J. C.; Floss, H. G. Acc. Chem. Res. **1980**, 13, 455. (b) Palcic, M. M.; Floss, H. G. In Vitamin B₆ Pyridoxal Phosphate, Chemical, Biochemical, and Medical Aspects; Dolphin, D., Poulson, R., Avramovic, O., Eds.; Wiley-Interscience: New York, 1986; Part A, p 25.

⁽²⁰⁾ The only exception known so far is the ω -amino acid:pyruvate aminotransferase of *Pseudomonas* sp. F-126, which abstracts the *pro-R* hydrogen from the C-4 carbon of γ -aminobutyrate: Burnett, G.; Walsh, C. T.; Yonaha, K.; Toyama, S.; Soda, K. J. Chem. Soc., Chem. Commun. 1979, 826. (21) Dunathan, H. C. Adv. Enzymol. Relat. Areas Mol. Biol. 1971, 35, 79.

National Science Foundation Predoctoral Fellow, 1987-1990.
 Müller, A.; Diemann, E.; Jostes, R.; Bögge, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 934.

^{(3) (}a) Coucouvanis, D. Acc. Chem. Res. 1981, 14, 201. (b) Holm, R. H.;
Simhon, E. D. In Molybdenum Enzymes; Spiro, T. G., Ed.; Wiley-Interscience: New York, 1985; Chapter 2. (c) Müller, A. Polyhedron 1986, 5, 323.
(d) Jostes, R.; Müller, A. J. Mol. Struct. (Theochem) 1988, 164, 211. (e) Müller, A.; Bögge, H.; Schimanski, U.; Penk, M.; Nieradzik, K.; Dartmann, M.; Krickemeyer, E.; Schimanski, J.; Römer, C.; Römer, M.; Dornfeld, H.; Wienböker, U.; Hellmann, W.; Zimmermann, M. Monatsh. Chem. 1989, 120, 367. (f) Coucouvanis, D.; Toupadakis, A.; Koo, S.-M.; Hadjikyriacou, A. Polyhedron 1989, 8, 1705.

⁽⁴⁾ Li₃[VS₄]·2DMF: Zhang, Y.; Holm, R. H. Inorg. Chem. 1988, 27, 3875.

⁽⁵⁾ Latroche, M.; Ibers, J. A. Inorg. Chem. 1990, 29, 1503.

⁽⁶⁾ Sola, J.; Do, Y.; Berg, J. M.; Holm, R. H. J. Am. Chem. Soc. 1983, 105, 7794; Inorg. Chem. 1985, 24, 1706. (7) Also, addition of THF to the M = Nb reaction mixture containing the

⁽⁷⁾ Also, addition of THF to the M = Nb reaction mixture containing the precipitate resulted in a homogeneous solution; ether diffusion yielded pale yellow, readily desolvated Li₃[NbS₄]-4MeCN, which was identified crystallographically.

Figure 2. The structure of $[NbFe_2S_4Cl_4]^{3-}$, showing 50% thermal ellipsoids and the atom-labeling scheme. The following mean values are averaged over the two inequivalent anions. Bond distances (Å): Nb-S, 2.290 (4); Fe-S, 2.327 (5); Nb-Fe, 2.842 (8); Fe-Cl, 2.272 (3). Bond angles (deg): Fe-Nb-Fe, 176.16 (6); S(1)-Nb-S(2), 105.0 (2); Nb-S Fe, 76.0 (2); S-Fe-S, 102.7 (3); Cl-Fe-Cl, 108.2 (6). $[TaFe_2S_4Cl_4]^{3-1}$ is isostructural with this cluster.

of one $[MS_4]^{3-}$ anion and are chelated by one TMEDA molecule each. Relative to idealized T_d anion symmetry, Li⁺ binding decreases S-M-S angles while the angle unbridged by Li⁺ is considerably expanded. The unique Nb-S distance is slightly longer than those in K_3NbS_4 (2.241 (8)-2.258 (8) Å⁵). When compared to the shortest M-S bridge bonds in $[M_6S_{17}]^{4-}$ (M- μ_2 S: mean 2.414 (4) Å (Nb), 2.405 (6) Å (Ta)⁶), it is clear that [MS₄]³⁻ bond lengths correspond to multiple bonds,¹⁰ a consistent property of all d⁰ tetrathiometalates.

The compounds Li₃[MS₄]·2TMEDA are freely soluble in strongly polar solvents such as DMF and Me₂SO, are somewhat soluble in THF and acetonitrile, and are very soluble in the latter two solvents in the presence of ca. 4 equiv of TMEDA/M. Anaerobic solutions lacking protic impurities are stable for days. Unlike other tetrathiometalates, $[NbS_4]^{3-}$ and $[TaS_4]^{3-}$ are not intensely colored but form pale yellow solutions in solvents such as THF and acetonitrile with patterns of narrow absorption bands characteristic of [MS₄]^{z-} chromophores. The two lowest-energy LMCT bands (v_1, v_2) occur in the UV region in the energy order Ta > Nb;⁸ ν_1 , likely $1t_1 \rightarrow 2e$,¹² is solvent dependent and is split in THF solution (335, 376 nm, Nb; 295, 329 nm, Ta). In comparison, the red-purple $[VS_4]^{3-}$ chromophore absorbs into the visible but also with a split ν_1 band (523, 560 (sh) nm, Me₂SO).⁴ The spectra indicate retention of tetrahedral structures of $[NbS_4]^3$ and $[TaS_4]^{3-}$ in solution and define the optical electronegativity series V > Nb > Ta.

The different outcomes of reactions 2 and 3 are dependent on reactant X. In reaction 3, we propose that the stronger silyl nucleophile MeO⁻ reacts irreversibly and completely with $(Me_3Si)_2S$ to afford the silvl methyl ether and $Me_3SiS^-Li^+$, ¹³ which then attacks $M(OEt)_5$ to give the silvl ethyl ether and $[MS_4]^{3-}$. Inasmuch as Et₄NCl does not react with (Me₃Si)₂S in acetonitrile over 1 week at room temperature, $[M_6S_{17}]^{4-}$ probably arises from direct reaction of the silyl sulfide with $M(OEt)_5$. That the cage product is sulfide poor with respect to initial mole ratios suggests incomplete reaction of the sulfiding agent and/or decomposition of initial products via sulfide loss. Also, Li⁺ may have a stabilizing effect on $[MS_4]^{3-}$ by ion-pair interactions, as are quite apparent in the crystal structures of Li₃[MS₄]·2TMEDA.

The potential of $[MS_4]^{3-}$ as precursors for cluster synthesis is evident from the reaction of these species (generated in situ) with 2 equiv of FeCl₂ or [FeCl₄]²⁻. From orange-red acetonitrile solutions crystalline R_4N^+ salts (R = Me, Et) of $[MFe_2S_4Cl_4]^{3-}$ are readily isolated in moderate yields. The compound $(Me_4N)_3[NbFe_2S_4Cl_4]$ ·DMF crystallizes with two metrically similar anions in the asymmetric unit. $[NbFe_2S_4Cl_4]^3$, shown in Figure 2, is a linear trinuclear cluster (Fe–Nb–Fe 176.16 (6)°) which approaches D_{2d} symmetry and is isostructural with $[TaFe_2S_4Cl_4]^{3-9}$ and with previously reported $[VFe_2S_4Cl_4]^{3-15}$ and $[MFe_2S_4Cl_4]^{2-}$ (M = Mo,¹⁶ W,¹⁶ Re¹⁷). Complexation results in only a small increase (0.02 Å) in the mean Nb-S bond length.

The ready accessibility of soluble forms of $[NbS_4]^{3-}$ and $[TaS_4]^{3-}$ provides entry to what should be a diverse solution reaction chemistry of these ions. One manifestation of this is formation of the clusters $[MFe_2S_4Cl_4]^{3-}$ which, as was $[VFe_2S_4Cl_4]^{3-,16}$ may themselves be precursors to the unknown heterometal MFe_3S_4 cubane-type clusters. We also anticipate that the synthetic methodology of reaction 3 may be applied to other transition metals to yield previously unknown [MS₄]²⁻ species with as yet unexplored reactivities. These are areas of our continuing research.

Acknowledgment. This research was supported by NSF Grant CHE 89-03283. X-ray diffraction equipment was obtained by NIH Grant 1-S10-RR-02247.

Supplementary Material Available: Positional and thermal parameters of $Li_3[MS_4]$.2TMEDA and $(Me_4N)_3$ - $[NbFe_2S_4Cl_4]$ ·DMF (17 pages). Ordering information is given on any current masthead page.

(15) Do, Y.; Simhon, E. D.; Holm, R. H. Inorg. Chem. 1985, 24, 4635. (16) Coucouvanis, D.; Simhon, E. D.; Stremple, P.; Ryan, M.; Swenson, D.; Baenziger, N. C.; Simopoulos, A.; Papaefthymiou, V.; Kostikas, A.; Petrouleas, V. Inorg. Chem. 1984, 23, 741. (17) Müller, A.; Krickemeyer, E.; Bögge, H. Z. Anorg. Allg. Chem. 1987,

(18) Kovacs, J. A.; Holm, R. H. Inorg. Chem. 1987, 26, 702, 711.

Tailored Cationic Palladium(II) Compounds as Catalysts for Highly Selective Linear Dimerization of Styrene and Linear Polymerization of *p*-Divinylbenzene

Zhaozhong Jiang and Ayusman Sen*

Department of Chemistry, The Pennsylvania State University University Park, Pennsylvania 16802 Received August 27, 1990

An important advantage in using transition-metal compounds as catalysts is the ability to tailor their activity and selectivity by a rational choice of ligands. We had earlier reported¹ that the palladium(II) species $[Pd(MeCN)_4](BF_4)_2$ (1) was an active catalyst for the polymerization of styrene (typical MW: 70000) and the di- and trimerization of α -methylstyrene to the corresponding indan derivatives at room temperature. The usual cationic mechanism was invoked for these transformations.¹ Herein, we report that the replacement of the weakly coordinating MeCN ligands in 1 by more strongly ligating and bulkier pyridine and phosphine derivatives results in the formation of highly selective catalysts for selective linear dimerization of styrene and linear polymerization of p-divinylbenzene. The new catalyst systems differ from most existing systems² for the cationic oligomerization and polymerization of styrene derivatives in several important ways. Specifically, (a) no indan derivative or higher oligomers are formed from styrene;² (b) only styrene reacts when a mixture of styrene and α -methylstyrene is employed, although

⁽¹⁰⁾ These M-S bond distances are as much as ca. 0.1-0.2 Å longer than those at Nb/Ta atoms with a single terminal sulfide,^{6,11} a feature qualitatively rationalized in terms of 4 strongly π -bonding ligands in a tetrahedral arrangement vs one such ligand in other stereochemistries.

^{(11) (}a) Do, Y.; Holm, R. H. Inorg. Chim. Acta 1985, 104, 33 and references therein. (b) Tatsumi, K.; Sekiguchi, Y.; Nakamura, A.; Cramer, R. E.; Rupp, J. J. J. Am. Chem. Soc. 1986, 108, 1358.
(12) (a) Müller, A.; Diemann, E.; Ranade, A. C. Chem. Phys. Lett. 1969, 88, 1205. (b) El-Issa, B. D.; Ali, A. A. M.; Zanati, H. Inorg. Chem. 1989, 2027.

^{28, 3297}

⁽¹³⁾ The sodium salt of Me₃SiS⁻ has been isolated: Do, Y.; Simhon, E.
D.; Holm, R. H. *Inorg. Chem.* 1983, 22, 3809.
(14) Li-S contact distances are entirely comparable to those in

[[]Cp*TaS₃Li₂(THF)₂]₂ where ion pair interactions also appear to play a sta-bilizing role: Tatsumi, K.; Inoue, Y.; Nakamura, A.; Cramer, R. E.; Van-Doorne, W.; Gilje, J. W. J. Am. Chem. Soc. **1989**, 111, 782.

^{554.61}

^{(1) (}a) Sen, A. Acc. Chem. Res. 1988, 21, 421. (b) Sen, A.; Lai, T.-W.; Thomas, R. R. J. Organomet. Chem. 1988, 358, 567. (2) Review: Kennedy, J. P.; Marechal, E. Carbocationic Polymerization; Wiley: New York, 1982; p 196.